Bernasconi A., Pellegrino L., Vergani F., Campanale F., Marian N.M., Galimberti L., Perotti M., Viti C., Capitani G., 2022. Recycling detoxified cement asbestos slates in the production of ceramic sanitary wares. Ceram.Int. https://doi.org/10.1016/j.ceramint.2022.09.147
Vergani F., Galimberti L., Marian N.M., Giorgetti G., Viti C., Capitani G., 2022, Thermal decomposition of cement–asbestos at 1100 °C: how much “safe” is “safe” J. Mater. Cycles Waste Manag., 24, 297-310, https://doi.org/10.1007/s10163-021-01320-6
Marian N.M., Giorgetti G., Magrini C., Capitani G., Galimberti L., Cavallo A., Salvini R., Vanneschi C., Viti C., 2021. From hazardous asbestos containing wastes (ACW) to new secondary raw material through a new sustainable inertization process: a multimethodological mineralogical study. J. Hazard Mater., 413 , https://doi.org/10.1016/j.jhazmat.2021.12541
Cenni di normativa
Aryal A., Morley C., 2020. Call for a global ban policy on and scientific management of asbestos to eliminate asbestos-related diseases. J. Public Health Pol. 41, 279–285. https://doi.org/10.1057/s41271-020-00223-4.
Italian Decree Minister 06/09/ 1994, 1994. Normative e metodologie tecniche di applicazione dell’art. 6, comma 3, e dell’art. 12, comma 2, della legge 27 marzo 1992, n. 257, relativa alla cessazione dell’impiego dell’amianto. S. Ord alla G.U. N 220 Serie Generale del 20/09/1994.
Italian Decree Minister 29/07/ 2004, 2004, Regolamento relativo alla determinazione e disciplina delle attività di recupero dei prodotti e beni di amianto e contenenti amianto N.248. G.U. N.234 Serie Generale del 05/10/2004.
Italian Decree Minister 27/09/ 2010, 2010, Definizione dei criteri di ammissibilità dei rifiuti in discarica. GU N. 281 Serie Generale del 01/12/2010.
Italian Law 257, 1992, Norme relative alla cessazione dell’impiego dell’amianto. S.Ord.alla G.U. N. 087 Serie Generale Parte Prima del 13.04.92 Supplemento 064 del 13.04.92, March 27th.
Studi minero-composizionali
Bloise A., Catalano M., Barrese E., Gualtieri A.F., Bursi Gandolfi N., Capella S., Belluso E., 2016. TG/DSC study of the thermal behaviour of hazardous mineral fibres. J. Therm. Anal. Calor. 123, 2225–2239. https://doi.org/10.1007/s10973-015-4939-8.
Gualtieri A.F., Giacobbe C., Viti C., 2012a. The dehydroxylation of serpentine group minerals. Am. Mineral. 97, 666–680. https://doi.org/10.2138/am.2012.3952.
Iwaszko J., Zawada A., Przerada I., Lubas M., 2018. Structural and microstructural aspects of asbestos-cement waste vitrification. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 195, 95–102. https://doi.org/10.1016/j.saa.2018.01.053.
Kusiorowski R., Zaremba T., Gerle A., Piotrowski J., Simka W., Adamek J., 2015. Study on the thermal decomposition of crocidolite asbestos. J. Therm. Anal. Calor. 120, 1585–1595. https://doi.org/10.1007/s10973-015-4421-7.
Pacella A., Tomatis M., Viti C., Bloise A., Arrizza L., Ballirano P., Turci F., 2020. Thermal inertization of amphibole asbestos modulates Fe topochemistry and surface reactivity. J. Hazard. Mater. 398, 123119 https://doi.org/10.1016/j.jhazmat.2020.123119.
Skinner H.C.W., Ross M., Frondel C., 1988. Asbestos and Other Fibrous Materials: Mineralogy, Crystal Chemistry, and Health Effects. Oxford University Press, New York.
Strohmeier B.R., Huntington J.C., Bunker K.L., Sanchezn M.S., Allison K., Lee R.J., What is asbestos and why is it important? Challenges of defining and characterizing asbestos. Int. Geol. Rev. 52, 801–872. https://doi.org/10.1080/00206811003679836.
Brown J.S., Gordon T., Price O., Asgharian B., 2013. Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol. 10, 12. https://doi.org/10.1186/1743-8977-10-12.
Cornu R., Beduneau A., Martin H., 2020. Influence of nanoparticles on liver tissue and hepatic functions: a review. Toxicology 430, 152344. https://doi.org/10.1016/j.tox.2019.152344.
Dela Cruz C.S., Tanoue L.T., Matthay R.A., 2011. Lung cancer: epidemiology, etiology, and prevention. Clin. Chest Med. 32, 605–644. https://doi.org/10.1016/j.ccm.2011.09.001.
Giantomassi F., Gualtieri A.F., Santarelli L., Tomasetti M., Lusvardi G., Lucarini G., Governa M., Pugnaloni A., 2010. Biological effects and comparative cytotoxicity of thermal transformed asbestos-containing materials in a human alveolar epithelial cell line. Toxicol. Vitr. 24, 1521–1531. https://doi.org/10.1016/j.tiv.2010.07.009.
Gualtieri A.F., 2017. Introduction. Mineral Fibres: Crystal Chemistry, Chemical–Physical Properties, Biological Interaction and Toxicity, Notes in Mineralogy. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, Twickenham, UK, pp. 1–15.
Guthrie G.D., Mossman B.T., 1993, Health effects of mineral dust. Mineralogical Society of America. ed, Reviews in Mineralogy. P.H. Ribbe Series.
IARC, 2012. Arsenic, metals, fibres, and dusts, IARC Monographs 100 C. International Agency for Research on Cancer, Lyon, FR.
Rahmani A.H., Almatroudi A., Babiker A.Y., Khan A.A., Alsahly M.A., 2018. Effect of exposure to cement dust among the workers: an evaluation of health related complications. Open Access Maced. J. Med. Sci. 6, 1159–1162. https://doi.org/10.3889/oamjms.2018.233.
Selikoff I.J., Churg J., Hammond E.C., 1965. Relation between exposure to asbestos and mesothelioma. N. Engl. J. Med 272, 560–565. https://doi.org/10.1056/NEJM196503182721104.
Shanshal S.A., Al-Qazaz H.K., 2020. Consequences of cement dust exposure on pulmonary function in cement factory workers. Am. J. Ind. Med. https://doi.org/10.1002/ajim.23211.
Wagner J.C., Sleggs C.A., Marchend P., 1960. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br. J. Ind. Med. 17, 260–271.
West R.R., Sutton W.J., 1954. Thermography of gypsum. J. Am. Ceram. Soc. 37 (5), 221–224.
Yarborough C.M., 2007. The risk of mesothelioma from exposure to chrysotile asbestos: current opinion in pulmonary medicine, 13, 334–338. https://doi.org/10.1097/MCP.0b013e328121446c.
Studi sul riutilizzo
Crippa M., Bianchi A., Cristofori D., Merletti F., Morazzoni F., Scotti R., Simonutti R., High dielectric constant rutile–polystyrene composite with enhanced percolative threshold. J. Mater. Chem. C 1, 484–492.
De Carvalho Gomes S., Zhou J.L., Li W., Long G., 2019. Progress in manufacture and properties of construction materials incorporating water treatment sludge: a review. Resour., Conserv. Recycl. 145, 148–159. https://doi.org/10.1016/j.resconrec.2019.02.032.
Gualtieri A.F., Cavenati C., Zanatto I., Meloni M., Elmi G., Gualtieri M.L., 2008. The transformation sequence of cement–asbestos slates up to 1200◦C and safe recycling of the reaction product in stoneware tile mixtures. J. Hazard. Mater. 152, 563-570. https://doi.org/10.1016/j.jhazmat.2007.07.037.
Gualtieri A.F., Giacobbe C., Sardisco L., Saraceno M., Lassinantti Gualtieri M., Lusvardi G., Cavenati C., Zanatto I., 2011. Recycling of the product of thermal inertization of cement–asbestos for various industrial applications. Waste Manag. 31, 91–100. https://doi.org/10.1016/j.wasman.2010.07.006.
Gualtieri A.F., Veratti L., Tucci A., Esposito L., 2012b. Recycling of the product of thermal inertization of cement-asbestos in geopolymers. Constr. Build. Mater. 31, 47–51. https://doi.org/10.1016/j.conbuildmat.2011.12.087.
Kusiorowski R., Zaremba T., Piotrowski J., 2016. Influence of the type of precalcined asbestos containing wastes on the properties of sintered ceramics. Construction and Building Materials 106, 422–429. https://doi.org/10.1016/j.conbuildmat.2015.12.110.
Ligabue M.L., Gualtieri A.F., Lassinantti Gualtieri M., Malferrari D., Lusvardi G., 2020. Recycling of thermally treated cement-asbestos for the production of porcelain stoneware slabs. J. Clean. Prod. 247, 119084 https://doi.org/10.1016/j.jclepro.2019.119084.
Paolini V., Tomassetti L., Segreto M., Borin D., Liotta F., Torre M., Petracchini F., 2019. Asbestos treatment technologies. J. Mater. Cycles Waste Manag 21, 205–226. https://doi.org/10.1007/s10163-018-0793-7.
Ruiz A.I., Ortega A., Fernandez R., Miranda J.F., López Samaniego E., Cuevas J., 2018. Thermal treatment of asbestos containing materials (ACM) by mixing with Na2CO3 and special clays for partial vitrification of waste. Mater. Lett. 232, 29-32. https://doi.org/10.1016/j.matlet.2018.08.061.
Tang Z., Li W., Tam V.W.Y., Xue C., 2020. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resour., Conserv. Recycl.: X 6, 100036. https://doi.org/10.1016/j.rcrx.2020.100036.
Yvon Y., Sharrock P., 2011. Characterization of thermochemical inactivation ofasbestos containing wastes and recycling the mineral residues in cement products. Waste Biomass Valor 2, 169–181. https://doi.org/10.1007/s12649-011-9063-
Mappature
INAIL, Settore ricerca, Dipartimento installazioni di produzione ed insediamenti antropici, 2013, Mappatura delle discariche che accettano in Italia i rifiuti contenenti amianto e loro capacità di smaltimento passate, presenti e future. Inail, Roma.
Legambiente, 2018, Liberi dall’amianto? I ritardi dei piani regionali, delle bonifiche e delle alternative alle discariche.
Paglietti F., Malinconico S., della Staffa B.C., Bellagamba S., De Simone P., 2016. Classification and management of asbestos-containing waste: European legislation and the Italian experience. Waste Manag. 50, 130–150. https://doi.org/10.1016/j.wasman.2016.02.014.
Paglionico M., 2017, I rifiuti contenenti amianto: da problema a risorsa. Geologia dell’Ambiente, Supplemento al n. 4/2017:29–33. ISSN 1591–5352.
Ross M., Nolan R.P., 2003. History of asbestos discovery and use and asbestos-related disease in context with the occurrence of asbestos within ophiolite complexes. In: Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America. https://doi.org/10.1130/0-8137-2373-6.447.